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The depinning of an elastic line in a random medium is studied via an extremal model. The latter gives
access to the instantaneous depinning force for each successive conformation of the line. Based on conditional
statistics the universal and nonuniversal parts of the depinning force distribution can be obtained. In particular
the singular behavior close to a(macroscopic) critical threshold is obtained as a function of the roughness
exponent of the front. We show, moreover, that the advance of the front is controlled by a very tenuous set of
subcritical sites. Extension of the extremal model to a finite temperature is proposed, the scaling properties of
which can be discussed based on the statistics of depinning force at zero temperature. In particular a new
temperature-dependent correlation length is shown to become relevant.
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I. INTRODUCTION

The depinning of elastic interfaces allows one to describe
the phenomenology of a variety of physical phenomena such
as the motion of a wetting contact line on a disordered sub-
strate[1], the propagation of a fracture front[2] in a hetero-
geneous material, or the advance of a magnetic wall in a thin
layer [3]. The depinning transition can be seen as a nonequi-
librium critical phenomenon(see Refs.[4–6] for recent re-
views). The system is driven by an equivalent external force
(the magnetic field for the domain wall, the stress intensity
factor for the fracture front,…) which plays the role of a
control parameter. The richness of the phenomenology arises
from the competition between the disordering effect of the
quenched pinning potential and the ordering(smoothing) ef-
fect of the elastic forces acting on the front. The nature(short
range/long range) of the latter will directly affect the univer-
sality class of the depinning. Moreover, depending on the
strength of the disorder, the motion front will either be col-
lective (weak pinning) or consist of successive avalanches
(strong pinning). In the following we focus on the latter situ-
ation.

To study the pinning/depinning transition, a specific algo-
rithm has been introduced under the generic name of “ex-
tremal model” [7–11]. It consists of adapting the driving
force so that only one site(the weakest one) can depin at a
time. In so doing, the system is compelled to stay at the edge
of the critical state(the front is driven at an infinitely low
velocity). Thus the evolution consists of a series of equilib-
rium positions because the driving force is adjusted to meet
this condition. It thus can be seen as an ideal quasistatic
driving [12]. However, the price to pay in such a description
is that the dynamical aspects of the propagation are not ac-
counted for(see Ref.[13] for details on this subject). In a
more complete picture either inertia or viscosity would have
to be introduced. As dynamics is sacrificed, time metric is
not included in the “extremal model” description. What is
preserved is simply the ordering of successive configura-
tions.

Close to but below threshold, at finite temperature, an
Arrhenius activation mechanism can allow for a steady

“subcritical” propagation. Note that this situation of thermal
rounding[14,15] differs from the creep regime at very low
forcing which has been extensively studied in recent years
[16–19]. In the latter, the driving force is very close to zero
and thermal activation may allow back and forth motion
along the direction of propagation. Close to threshold, how-
ever, we may neglect the probability of a backward motion.
Moreover, in the context of fracture or wetting, chemical
reactions may produce an irreversible motion of the front. In
the following we will not consider the possibility of the front
receding. The activated mechanism thus turns out to be rela-
tively easy to implement as an extension of the extremal
model, where the latter is recovered in the limit of zero tem-
perature. The motion consists in a succession of fast moves
interrupted by long trapping events which require a thermal
activation step to overcome an energy barrier. If the tempera-
ture is very low compared to the trap depths, the first site to
depin will be the weakest one. In this limit of a vanishing
temperature the system will thus naturally follow anextremal
dynamics. The degeneracy of the time metric can, however,
be clarified by studying the zero temperature limit. This de-
scription is valid for a subcritical forcing, close to threshold.
This forcing introduces a finite correlation length. However,
the thermal activation itself introduces another finite correla-
tion length. The competition between these two length scales
will finally control the scaling property of the propagation.

The aim of this paper is thus a careful study of the effect
of temperature on both the dynamics and the critical proper-
ties of the depinning fronts. A key parameter in the finite
temperature depinning is the ratio between the thermal en-
ergy and the trap depths all over the front. The latter directly
depend on the fluctuations of the depinning forces at zero
temperatures. The external force needed to depin the front
from a blocked configuration is actually a highly fluctuating
quantity. The knowledge of the distribution of these depin-
ning forces thus appears to be an essential ingredient in the
study of depinning at finite temperature.

The first part of this paper is thus devoted to the study of
the depinning forces at zero temperature. In Sec. II A we
give the definition of the model and in Sec. II B we recall its
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scaling properties. In particular we present evidence for the
super-rough scaling of the interface and its consequences on
the dynamic exponent. Our main new results for theT=0
depinning transition are presented in the two following sec-
tions. In Sec. II C we show that in the same manner as the
width of the depinning interface, the instantaneous value of
the depinning force is a fluctuating quantity whose distribu-
tion can be described by a universal function. The scaling
properties of these fluctuations are used to propose a precise
determination of the critical point. In Sec. II D we show the
existence of a tenuous fraction of precursory sites along the
interface. These sites are characterized by a subcritical de-
pinning force while most of the sites of the interface need a
force larger than threshold to depin. The distribution of these
subcritical forces is singular close to threshold and charac-
terized by a universal exponent. Moreover, the location of
these precursors along the front is shown to obey a fractal
distribution.

In the second part we study the finite temperature round-
ing of the depinning transition. In Sec. II A we expose the
details of the numerical simulations. In Sec. II B we show
that at low temperature the velocity follows an Arrhenius
dependence with a temperature dependent prefactor:vsTd
~T−gexps−f /Td where f is the distance to threshold andg a
universal exponent only dependent on the critical exponents
of the zero temperature transition. Note that this expression
which is consistent with our numerical results differs from
the scaling proposed in[14,18] vsTd~Tb/rFsf /F1/rd. In Sec.
II C we show that the interface obeys an Edwards-
Wilkinson-like scaling at high temperature. In Sec. II D we
focus on the transition between critical and annealed re-
gimes. We show that in addition to the usual correlation
length the latter is controlled by another length scalezT
which depends only on temperature as a power law. The
exponent associated to this length scale is directly related to
the exponent which characterizes the distribution of subcriti-
cal forces developed in part I. This scaling slightly different
from the one obtained by Chauveet al. [18] is again sup-
ported by numerical simulations.

II. DEPINNING FORCE DISTRIBUTIONS

A. Description of the model

At each time step, the front is represented as a single
valued functionhsxd, with the additional assumption that its
slope is small. The mean orientation of the front is along the
x axis, while it propagates along a perpendicular directiony.
For numerical simulations, the front is discretized on a regu-
lar grid of size L with periodic boundary conditions:hi
=hsxid.

Time is also discretized and incremented by one unit at
each elementary move of the front. This time is thus a simple
way to order the successive events, but it does not corre-
spond to a physical time. Additional information has to be
introduced to describe the off-equilibrium motion, and thus
decide whether viscosity or inertia, or activation processes
control the dynamics. The strength and weakness of the ex-
tremal approach is that only successive static positions are

described, while the transition between these conformations
becomes part of the postulated rules of the model but does
not stand for a real dynamic. Thus in this first part,t should
not be misinterpreted as a real time. However, in the finite
temperature section, we will revisit this question and see
how the extremal dynamics can be recovered from a more
realistic dynamics.

As introduced above, the motion of the front driven at an
external forceF depends only on the competition between a
local trapping forcegfx,hsxdg and an elastic interaction
Felsxd. We now specify them in more detail.

The distortion of the front due to the random environment
induces elastic restoring forces. In the case of wetting the
latter are the capillary forces. Using a small slope approxi-
mation, the elastic force contribution is linear with respect to
hsxd, Felsxd=eGsx−x8dhsx8ddx8. Depending on the physical
situation considered, these interactions can be short or long
ranged. In the case of wetting the kernelG presents an alge-
braic decayGsrd~ r−2 up to the capillary length. In a Hele-
Shaw experiment, however, the cutoff scale of the capillary
forces is given by the width of the cell and the Green func-
tion can be approximated byG.d9, the second derivative of
the Dirac distributiond. These short ranged interactions are
then well described by a Laplacian term. In the following we
focus on the latter situation withFel~−]2h/]x2, or in the
discretized version,Fi

el=−hi−1+2hi −hi+1.
The randomness of the environment can be introduced in

two respects: first in the spatial distribution of the traps, and
second in the distribution of the trap depths. No correlation is
considered here and these two quantities are entirely charac-
terized by their statistical distribution. Note that the same
critical behavior is obtained as soon as either the trap posi-
tions or the trap depths are random. Either one of these two
quantities can be a constant without changing the universal-
ity class of the model, i.e., all critical properties remain un-
affected. We have performed a number of different numerical
simulations changing the shape of the two distributions, and
the only changes which are observed concern small scales in
space and time. In the following we will consider that the
trap depthgfx,hsx,tdg and the front advance at the active site
are uniformly sampled between 0 and 1.

In order to study the depinning force fluctuations, we
drive the system with an extremal dynamics. This consists of
adapting the external force so that only one site can depin at
each iteration step. For a given external forceF, the criterion
for depinning at a particular positioni on the front is

F . Fistd = gi„histd… + Fi
el
„hhjstdj…. s1d

One can thus naturally define the extremal sitesi* ,hi*d
such thatFcstd=miniFistd=gi* +Fi*

el is the minimal external
force to apply so that at least one site of the front can depin.
The depinning criterion for a particular conformation of the
front is thus

F . Fcstd = min
i

fgi„histd… + Fi
el
„hhjstdj…g. s2d

The front depinning forceFcstd is in our simple version
totally controlled by the front geometry. The extremal dy-
namics simply consists of tuning at each iteration stept the
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external force at exactly the depinning force of the current
front conformation:Fstd=Fcstd. From the dynamical point of
view it corresponds to drive the front at vanishing velocity
with a very stiff spring. The system thus remains constantly
at the edge of the critical state. The front explores a large
number of different configurations to which correspond fluc-
tuations of the depinning forceFcstd. By definition the criti-
cal thresholdF* is the minimum constant force to apply so
that the front can advance indefinitely, it thus corresponds to
the maximum of the front depinning forceFc over all con-
formations:

F* = max
t

Fcstd = max
t
†min

i
‡fgi„histd… + Fi

el
„hhjstdj…g. s3d

From the numerical point of view, the extremal dynamics
finally amounts to iterate the following sequence:(i) identify
the extremal sitei* ; (ii ) advance the front at positioni* by a
random increment;(iii ) update the trap depth,gi* , on the site
i* corresponding to the new front positionhsi*d; and (iv)
update the elastic couplingsFi

el on the front to account for
this local advance. The most time consuming step is the
identification of the extremal site. Numerically efficient
implementation can be used to reduce the computation cost
of each iteration to log2sLd operations because of the short
range nature of the interaction(note that in case of long
range interactions, introducing an ultrametric distance along
the front [20] allows one to reach the same numerical effi-
ciency without changing the universality class of the model).

B. Scaling properties

Let us summarize the expected scaling behaviors for an
elastic line driven at a constant forceF close to(but below)
thresholdF* .

(1) Below thresholdF* the length of the typical advance
j' scales asj'~ sF* −Fd−n'.

(2) The correlation length along the front scales as
ji ~ uF* −Fu−ni.

(3) The relaxation timet of a line segment of length
j scales ast~ji

z; z is called the dynamic exponent.
(4) At threshold, in the steady state, the front conforma-

tion is self-affine, characterized by a roughness exponentz.
This can be shown by studying the average power spectrum
of the front which scales ask−1–2z. Similarly the wavelet
transform also reveals the same exponent[21]. In real space,
the typical widthw (rms height) of the front over an interval
Dx scales aswsDxd~ sDxdz, whenz is smaller or equal to 1.
This is observed for some long-range elastic kernels. In our
case, where the elastic kernel is the local curvature, we will
see below that thez exponent is larger than unity. In this
“super-roughening” case, the scaling is anomalous[15,22]
and the previous relation has to be corrected towsDxd
~Lz−1Dx. In Fig. 1 we show numerical evidence for the va-
lidity of this “super-rough” scaling with the valuez=1.25 for
the roughness exponent.

(5) Close to the critical threshold the motion consists of
successive localized avalanches of lateral sizeDx. The size
distribution of these jumps follows a power law up to the
correlation lengthji. Below ji, the probability of observing

jumps of sizeDx., scales asPsDx.,d~,−1−A. In the
framework of an extremal dynamics driving, the driving
force is not constant but is adjusted at the current depinning
force Fcstd. An avalanche triggered at a forceF thus corre-
sponds to a sequence of depinning events such that the cur-
rent depinning force remains below the driving force
Fcstd,F. The distributions of avalanches can thus be di-
rectly derived from the fluctuations of this depinning force
Fcstd. A directly related quantity is the probabilityPsDxut8d
that after a sequence oft8 events the depinning site has
moved a distanceDx. We have

PsDxut8d ~ Dx−afS Dx

t81/z8D s4d

wherefsud~ua for u!1 andfsud<const foru@1. In the
framework of extremal dynamics,z8 corresponds to a dy-
namic exponentssee Refs.f13,23g for details on the rela-
tions betweenz8 and the genuine dynamic exponentz in-
troduced aboved. In the following we restrict the study to
extremal dynamics and we use the notationz for the sake
of simplicity.

Simple scaling relationships immediately derive from
these properties and allow one to reduce the number of in-
dependent exponents.

(1) Below threshold the front advance is confined to a
region of lengthji, and in the case of a roughness exponent
z.1 the mean advance over this region is of order
j'~jiLz−1~ sF−F*d−niLz−1. This leads to

n' = ni = n

with an unusual size-dependent prefactor. Note that this
property is only true for a roughness exponentz.1, other-
wise n'=niz.

(2) Over a region of extentji, the typical macroscopic
curvature is of orderji

z−2, and the latter scaling should bal-
ance the fluctuation of depinning force observed in order to
depin such a segment:DF~ji

−1/n. Therefore[5]

FIG. 1. Standard deviationssDxd of the height difference be-
tween points separated by a distanceDx for different system sizes
L=28,29,210. The rescalingx→x/L, s→s /Lz−1 with z=1.25 al-
lows one to capture the finite size effects.
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z +
1

n
= 2. s5d

(3) Let us recall that time only counts individual motions,
and is not physical. Therefore the dynamic exponent is an
improper denomination. Nevertheless, in this section, we
keep this denomination since it refers to its common usage in
statistical models. The mean advance of a segment of length
j scales asLz−1j and the size of an avalanche of lateral
extensionj may be written ast~j2Lz−1 which leads imme-
diately to

z= 2 s6d

wheneverz.1. Note, however, that even if the dynamic
exponentz=2 appears to be superuniversal as soon asz.1,
the relation betweent andj becomes system size dependent.
Otherwise, forz,1, the same argument leads toz=1+z
f11,23g.

All exponents buta which characterize the avalanche be-
havior can then be directly derived from the roughness ex-
ponentz. A simple scaling relationship can, however, be es-
tablished in the context of the avalanches[24]. Let us start
from the probabilityPsDxutd that after a sequence oft events
the depinning site has moved along the line from a distance
Dx. The distanceDx is nothing but the sum of all successive
jumps Dyi occurring at stepsi P f1,tg, the distribution of
these jumps beingPsDyd~ sDyd−a. Assuming no time corre-
lation we can apply a generalized central limit theorem for
the sum variableDx. The value of the exponenta being
slightly below 3, the limit distribution is not Gaussian but a
Lévy distribution La−1 that exhibits at infinity the same
power law behavior as the original power law distribution:
La−1sDxd~ sDxd−a:

PsDx,td <
1

t1/sa−1dLa−1S Dx

t1/sa−1dD s7d

which leads to the scaling relationshipa=1+z. In the present
case of Laplacian elasticity,z=2 and the predictiona=3
slightly overestimates the value obtained by numerical simu-
lations a<2.95 (see Fig. 2). This good agreement can be
interpreted as the quasiabsence of temporal correlations.
Note, however, that in the case of long range elasticity where
the role of temporal correlations is expected to be higher, this
scaling relationship becomesa=2+z which is far above the
measured valuesa<a wherea is the exponent of the elastic
redistribution function. As developed in Refs.[23,24], in the
latter case, temporal correlations become more significant.

C. Scaling and universality of depinning force
fluctuations

In Fig. 3 we display a sequence of depinning forcesFcstd
observed over 1000 steps of an extremal dynamics simula-
tion and the corresponding distributionPsFcd in Fig. 4. The
upper force value of this distribution corresponds to the criti-
cal thresholdF* . In the following we will argue that close to
the critical threshold the distribution of depinning forces ex-
hibits a universal behavior:

PsFcd ~ sF* − Fcdm. s8d

Let us come back now to the series of depinning events.
The depinning forceFc fluctuates and can be described by a
statistical distribution. The maximum value of the latter
gives the value of the critical threshold. In the framework of
a simulation this thresholdF* is obtained as the maximum
depinning force over the ensemble of depinning events. Re-
stricting ourselves to a finite system of lateral extensionL,
our determination will be biased by finite size effects. This
invites us to introduce a simple prescription to get a very
accurate determination ofF* . Conditioning the distribution
of depinning force by the distanced between consecutive
active sites, we can build distributionsPsFc;dd. We expect
these distributions to converge to a Dirac distribution cen-
tered at F* as d diverges since we probe only critically
pinned configurations. This effect is directly observed in Fig.
5 where we superimpose the original distribution of depin-

FIG. 2. Distribution of distances between active sites corre-
sponding to depinning events separated by a time delay between
Dt=1 andDt=25. After rescaling all distributions fall on a master
curve. This rescaling has been obtained with the valuez=2 for the
dynamic exponent. The dashed line corresponds to a power law of
exponenta=−2.95.

FIG. 3. Sequence of depinning forcesFcstd. The dashed line
corresponds to the value of the critical thresholdF* =maxt Fcstd.
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ning forcesPsFcd and the contributions corresponding to in-
creasing jump sizesd. We observe that, except for small
jumps the successive distributions keep a similar shape up to
scaling factors. In the following we check that these condi-
tional distributions can indeed be rescaled onto a unique
master curve using the scaling:

PsFc;dd =
1

d−bcSF* − Fc

d−b D . s9d

As a direct consequence of such a scaling we should in
particular observe that the first and second cumulant of these
distributions, i.e., the differenceF* −kFcl and the standard
deviation both scale asd−b:

dFcsdd = F* − kFclsdd ~ d−b, s10d

sFc
sdd = ÎkFc

2lsdd − kFcl2sdd ~ d−b. s11d

This scaling directly leads to a linear dependence between
kFcsddl andsFc

sdd. In Fig. 6, we check indeed that for large

values of the jump sized, this linear behavior is obeyed. By
extrapolation of this linear relation to an infinite system for
which the widthsFc

sdd vanishes, we obtain a precise deter-
mination of the critical thresholdF* . We obtain in the present
case

F* = 0.392 ± 0.001. s12d

Using the latter value, we plot in Fig. 7 the evolution of
dFcsdd and sFc

sdd versusd in logarithmic scale. The ob-
served linear behavior corresponds to power laws of expo-
nentb=0.75. The value of the latter exponent can be under-
stood since the depinning forceFc directly derives from the
local curvature. The latter can be estimated using the elastic

FIG. 4. Distribution of depinning forces,psFcd.

FIG. 5. Distribution of depinning forces conditioned by their
distance to threshold,psFc,dd, and the resulting global distribution
PsFcd (bold). The larger the distanced between consecutive active
sites, the narrower the distributions and the closer to the critical
force.

FIG. 6. The linear relationship between the mean depinning
force and its fluctuation allows one to extrapolate the value of the
depinning force for an infinite distance between consecutive active
sites, i.e., the depinning thresholdF* for an infinite system. A nu-
merical fit givesF* =0.392±0.001.

FIG. 7. The mean distance from the depinning force to the de-
pinning threshold and the depinning force fluctuations calculated
for given distances between consecutive active sites obey a scaling
law with the latter distance. The straight lines plotted as a guide to
the eye correspond to power laws of exponent 0.76 and 0.77 con-
sistent with the expected value 2−z<0.75.
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kernel and the roughness of the front. In the present case we
havedFelsdd~dz−2 wherez<1.25 is the roughness exponent
of the depinning front. This estimationb=2−z<0.75 is con-
sistent with our numerical data. Moreover we can identify
1/b as the exponentn characterizing the divergence of the
correlation length close to threshold and we recover the scal-
ing law of Eq.(5):

z +
1

n
= 2. s13d

Using this scaling we check in Fig. 8 that the successive
conditional distributions collapse onto a single universal
master curve. The knowledge of the distribution of distances
between successive depinning sites allows us now to derive
the behavior of the force distribution close to threshold.

PsF* − Fcd =E PsFc;,dps,dd,

=E ,1/nc„sF* − Fcd,1/n
…,−ad,

= sF* − Fcd−1+an−nE u1−an+n−1csuddu

~ sF* − Fcdsa−1dn−1. s14d

We thus obtain a universal behavior of the distribution of
depinning forcesFc close to threshold as presented in Eq.
(8), with

m = sa − 1dn − 1 < 1.6. s15d

Note in addition that when the distanced is small com-
pared to the correlation lengthj, x;d/j!1, the dependence
of the P distribution with respect tosF* −Fcd should be in-
dependent ofd, so thatPsFc;dd and PsFcd share the same
behavior(see Fig. 5). Hence we expectcsxd,xm for x!1, in
good agreement with the behavior shown in Fig. 8.

At this point it is important to clarify that the distribution
P by itself is not universal and depends on the local defini-
tion of the front advance and the trap depth. The details of
the random distributions are absorbed in the small time and
scale behavior. In contrast collective effects contribute to
large jumps in the active sites andC is universal as well as
the singular behavior ofP close to threshold.

D. Subcritical sites along the depinning front

In Fig. 9 we show the distribution of all individual depin-
ning forcesFi =gi −Fi

el along the front obtained from ex-
tremal dynamics. We see clearly that two different popula-
tions of sites can be distinguished. Above thresholdF* ,
QsF.F*d follows some kind of truncated Gaussian distribu-
tion. We also note that there is a small but significant number
of sites which carry a force smaller than threshold,F,F* .
Moreover, the decay of frequency is very abrupt right below
F* . We will argue that this decay can be rationalized as a
power law of the differencesF* −Fcd, QsF,F*d~AsLdsF*

−Fd−«. In the inset of Fig. 9 we plotted the proportion of
subcritical sitesQsF,F*d against the system size. This evo-
lution appears to follow a power lawQsF,F*d~LD−1 with
D<0.35. We show below thatD can be regarded as a fractal
dimension of the set of subcritical sites along the front.

In the Appendix, we will introduce a mean-field version
of the model where such a distribution can be computed
analytically. In this simple variant of the depinning model,
the elastic force is not transferred from the active site to its
nearest neighbors but to two sites chosen randomly along the
front. Although a quantitative comparison cannot be estab-
lished because of the mean-field nature of the solvable
model, on a qualitative ground, the main features of the force
distribution are recovered. In Fig. 10, one can distinguish
again between a Gaussian-like distribution for depinning
forces above the critical threshold and a singular part below

FIG. 8. After rescaling the distributions of depinning forces cor-
responding to distancesd=4,8,16, and 32collapse onto a unique
universal master curve.

FIG. 9. Distribution of individual depinning forcesFi =gi −Fi
el

along the front. The subcritical part of the distributionsF,F*d is
size dependent. In the inset we see that the relative weight of this
subcritical part follows a power law of exponent 0.65 with the size
L. This suggests that the set of subcritical site is fractal with a
dimensionD=1–0.65=0.35.
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the threshold. Moreover, it can be shown that the amplitude
of this singular part is system size dependent.

The “subcritical” sites which carry a force smaller than
threshold play a very important role, as we now try to clarify.
At each time step, the extremal site corresponds to the mini-
mum force and always remains smaller thanF* . Thus the
active site is always part of the subcritical sites. Its depinning
induces a local unloading and an additional reloading on its
neighbors. We note that a subcritical site has a chance of
being activated wherever it is located, while a site carrying a
force larger than threshold can only become active if one of
its neighbors becomes active itself. These sites can thus be
regarded as a population of “precursors” of depinning.

In order to determine the distribution of the “local” depin-
ning forces along the front we use the same tools as above.
We first show that the distribution ofFi along these sites
depends on their distance to the extremal one as a power law:
QsFi ,F*d~ uxi −xi* u−a8. We observe then that the conditional
distributionQsFi ,F* ; uxi −xi* u=dd obeys the same scaling as
the one studied above for the distribution of depinning
forces. This allows finally to estimate the power law behav-
ior of the distribution of the depinning forces of this popula-
tion of subcritical sites close to threshold.

In Fig. 11 we plot in logarithmic scale the mean differ-
ence to thresholdkF* −Fi ; uxi −xi* u=dl for sites at a distanced
from the extremal onei* . We obtain the same scaling as for
the distribution of the depinning forceFc conditioned by the
distance between successive depinning sites:

kF* − Fi ; uxi − xi* u = dl~d−1/n,
1

n
= 2 −z s16d

and again we see in Fig. 12 that we can rescale all condi-
tioned distributions onto a single master curve provided the
distanced is large enough.

PsF* − Fi = f . 0;uxi − xi* u = dd = d1/nwsfd1/nd. s17d

In Fig. 13 we show that the subcritical sites are not ho-
mogeneously distributed along the front. We plot in logarith-
mic scale the distribution of distancesd along the front be-
tween the extremal site and any other subcritical site. The
straight line obtained in logarithmic scale indicates that the
latter obeys a power law:

nsuxi* − xiu = d;F , F*d ~ d−c, s18d

with c<0.68, which indicates that the subcritical sites form a
fractal set of dimensionD=1−c<0.32, which is consistent
with the valueD<0.35 obtained above for the evolution of
the population of subcritical sites against the system size.

FIG. 10. Comparison between the result of a direct numerical
simulation (symbols) and the previous analytic expressions(con-
tinuous curves). The system size was set toL=28,210, and 212. As
above we see that only the subcritical part is size dependent.

FIG. 11. The differencedF (current force to threshold) of pre-
cursory sites located at a distanced from the extremal site scales as
a power law ofd. The straight line corresponds to a power law of
exponent 0.75<2−z.

FIG. 12. After rescaling the distributions of subcritical depin-
ning forcesFi conditioned by the distanced to the extremal sitei* ,
collapse onto a single master curve.
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The above scaling relationships can now be used to esti-
mate the distribution of depinning forces along the front
close to threshold:

QsF* − Fi = f . 0d

= AsLd E QsF* − Fi ;,dns,dd,

= AsLd E ,1/nf„sF* − Fid,1/n
…,−cd,

= AsLdsF* − Fid−1+cn−nE u1−cn+n−1csuddu

~ AsLdsF* − Fid−« s19d

with «=1+nD<1.45. The size dependent prefactor can be
estimated using the fact that for a front of sizeL the typical
cutoff of the elastic force isL−1/n. Rewriting the total number
of subcritical sites along the front then gives:

NsLd = LAsLdE
−`

L−1/n

sF* − Fid−« s20d

=LAsLdL−1/ns1−«d s21d

=AsLdL1+D. s22d

The fractal dimension of this population of subcritical sites
being D, we have in additionNsLd~LD which imposes
AsLd~L−1 and we have finally(see Fig. 14):

QsF* − Fi = f . 0d ~
1

L
sF* − Fid−«, « = 1 +

D

2 − z
.

s23d

We see thus that the depinning is controlled by the evo-
lution of a very tiny fraction of subcritical sites. These sites
are distributed fractally along the front and can be regarded

as precursors of the avalanches to come. Close to threshold
the depinning force associated to these sites is power law
distributed with an exponent depending both on the rough-
ness exponent of the frontz and the fractal dimensionD
characterizing the population of subcritical sites.

III. FINITE TEMPERATURE DYNAMICS

We now consider the case of depinning at finite tempera-
ture. The transition loses its critical character(see also Refs.
[25–27] for the effect of temperature on various self-
organized critical models). As a matter of fact, even at arbi-
trary low external driving, the front keeps moving. The ve-
locity is, however, extremely low, most of the time being
spent to thermally depin from blocked conformations. This
creep motion has been intensively studied in recent years
from the experimental[3] and theoretical points of view
[16–19]. It has been argued that at very low forcing, the
velocity follows a stretched exponential behavior against the
driving force:

vsF,Td ~ expF− SF*

F
Dm T

T0
G , s24d

wherem=s2z−1d / s2−zd.
Note again that such a behavior is only expected to hap-

pen at very low forcing. This means in particular that the
macroscopic motion of the front results from a balance be-
tween microscopic backward and forward motions.

In this section we focus our study on a slightly different
situation, namely, the thermal rounding of the transition ob-
tained at finite temperature for a driving force in the vicinity
of the critical threshold. Under these conditions the follow-
ing behavior[14,28] has been proposed for the velocity:

vsF,Td ~ Tb/rFSF* − F

T1/r D . s25d

Close to threshold the probability of a backward motion
can be neglected. At finite temperature the motion thus con-

FIG. 13. Distributionnsdd of distancesd of subcritical sites to
the extremal site. The straight line indicates a power law of expo-
nent 0.32. The data being obtained with a logarithmic sampling of
d, this corresponds to a power lawnsdd~d−c, c<1−0.32<0.68.

FIG. 14. Distribution of subscritical depinning forcesF,F*

along the front. Close to threshold the distribution of subcritical
sites follows a power law of exponent −1.75.
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sists of a series of rapid finite moves interrupted by long
pinned stages from which the front can only escape by ther-
mal activation. Two limit cases can actually be distinguished
regarding the thermal depinning of a blocked conformation
of the front. At very low temperature, the front most likely
depins at the extremal site. Thus the sequence of depinning
events is not affected by the introduction of a temperature.
The computation of the time spent by the front to escape any
blocked conformation allows one, however, to reintroduce a
physical time in this quasi-extremal dynamics. The knowl-
edge of the depinning force distributionsPsFcd thus serves to
quantify the velocity of the front. We find in this limit a
slightly different scaling from Eq.(25) . The second limit
case corresponds to high temperatures. During a transient, all
sites are free to advance; then the roughening of the front can
be well described by an annealed dynamics. This induces a
scaling of the front roughness different from the one ob-
tained at zero temperature: we observe a roughness exponent
zT<0.5 instead of the zero temperature valuez<1.25.

In the following we first present the simple Monte Carlo
algorithm used to run the dynamics of the front at finite
temperature. The latter is obtained by allowing activated de-
pinning along the front. We then give results obtained in the
low and high temperature limits. We finally present a crite-
rion allowing one to discriminate between these two regimes.
It appears actually that besides the “static” correlation length
j of the critical transition another characteristic length of
thermal originjT plays a key role in the problem: belowjT
the front follows aT=0 dynamics but abovejT the activated
depinning becomes dominant and the front follows an an-
nealed Edwards-Wilkinson-like dynamics[29].

A. A simple Monte Carlo algorithm for depinning at finite T

Let us come back to the definition of the dynamics. Con-
sider a pointi along the front. At zero temperature the crite-
rion for depinning at this particular site is

Di = Fext+ Fi
el − gi . 0. s26d

Note here that for the sake of simplicity we only consider
the fluctuating part of the random traps, the constant part,
call it G being implicitly absorbed in the external driving
force:Fext=Fs0d

ext−G. The values of this effective driving force
may thus be arbitrarily low and even negative without viola-
tion of the hypothesis of microscopic forward motion men-
tioned above.

At finite temperature we can estimate the local depinning
time ti via an Arrhenius term:

pstid =
1

ti
expS−

ti
ti
D, ti =

1

n0
maxF1;expS− Di

T
DG

s27d

wheren0 corresponds to a natural frequency of vibration at-
the microscopic scale.

From the numerical point of view we can use the follow-
ing algorithm. At timet, all points satisfying the criterion of
propagation(26) are advanced simultaneously up to the next
traps. The waiting timest j corresponding to the pointsj that

do not satisfy the criterion are computed from their respec-
tive distributions. Points such that the waiting time is below
the time unit are also advanced. The elastic forces are then
updated and time is incremented. If no point along the front
has been advanced, the location of the first site to thermally
depin and the associated waiting time are drawn from the
Arrhenius distributions. Again the selected point moves for-
ward, the elastic forces are updated along the front but the
time is incremented by the waiting time spent in this blocked
conformation. Let us now be more explicit about the deter-
mination of the waiting time and the location of the depin-
ning site in the case of a blocked conformation.

The probabilityPistddt that the sitei is the first to ther-
mally depin in the time intervalft ,t+dtg can be written

Pistd =
1

ti
expS−

t

ti
Dp

jÞi
E

t

` 1

t j
expS−

u

t j
Ddu s28d

=
1

ti
expS−

t

t* D,
1

t* = o
j

1

t j
. s29d

The probabilityr i that the activated depinning event takes
place at this particular sitei is thus independent of time

r i =E
0

`

Pistddt =
t*

ti
. s30d

In a similar manner, the probabilityPactstd that the first acti-
vated depinning event takes place at timet is

Pactstd =
1

t* expS−
t

t* D . s31d

Note that the timet and locationi appear as independent
variables. When the front is pinned, the algorithm thus con-
sists of drawing a waiting time from the distributionPactstd
and to choose the site of depinning according to the weights
r i. The characteristic times involved inr i depend on the dis-
tribution PsFid of individual depinning forces along the
front. In the following we focus on the two limiting cases of
low and high temperature.

At low temperature, when the front is pinned the waiting
time is dominated by the characteristic time of the extremal
site. The sequence of depinning events is identical to the one
of the extremal dynamics. The time evolution directly results
from the knowledge of the distribution of depinning forces
PsFcd of the extremal. At high temperature, the probability of
depinning becomes comparable for all sites along the front.

B. Low temperature behavior: Activated extremal
dynamics

We consider here the case of very low temperature. The
loading external forceFext is constant below the threshold
F* . At a given conformation of the front, all sites satisfying
the criterion of propagation are advanced, the elastic forces
are then updated. If the front is blocked the only site to depin
is the extremal one. The timet associated to an iteration is
drawn from an Arrhenius distribution

UNIVERSAL DEPINNING FORCE FLUCTUATIONS OF… PHYSICAL REVIEW E 70, 051101(2004)

051101-9



pstd =
1

t
expS−

t

tc
D, tc =

1

n0
maxF1;expSFext− Fc

T
DG .

s32d

The knowledge of the distribution of depinning forces
PsF* −Fcd gives us directly the distribution of waiting times
in blocked configurations[30]. The mean waiting timektl to
depin from a blocked conformation for an external constant
loadingFext is

ktl =E
Fext

F*

dFc expSFc − Fext

T
DAsF* − Fcdm s33d

~ Tnsa−1d expSF* − Fext

T
D s34d

where we used the conditionT!F* −Fext. In this regime we
observe a simple Arrhenius behavior for the mean depinning
time with a power law correction in the ratio temperature/
distance to threshold. In Fig. 15 we show the scaling of this
waiting time. After rescaling by the Arrhenius factor we ob-
serve indeed a power law dependence on the temperature.
Numerically we find for the exponentnsa−1d=2.3 compared
with the expected valuensa−1d=2.6 with z=1.25 anda
=2.95.

C. High temperature behavior: Edwards-Wilkinson-like
dynamics

At high temperature, all growth probabilities tend to be
equal, which generates an independent evolution at each site.
The result is simply a white noise morphology, with ever
increasing slopes and curvatures. This regime can only be a
transient one. At long times(and at lower temperatures), a
bias between the growth probability and the curvature will be
felt and hence this limit will correspond to an annealed
model known as the Edwards-Wilkinson(EW) model [29],

which indeed gives rise to self-affine fronts with a roughness
exponentz=0.5. We thus expect to see a crossover fromz
=1.25 at low temperature, toz=0.5 at higher temperature.
This is precisely what is observed in the numerical simula-
tions as shown in Fig. 16 which represent the scaling behav-
ior of the front roughness for the same driving force but
different temperatures. Here we measured along the front the
averaged wavelet coefficientsvsad. For a self-affine front of
roughness exponentz, these coefficients are expected to
scale asvsad~a1+2z with the length scalea [21]. In log-log
scale we observe a scaling behavior with an apparent expo-
nent decreasing fromz<1.25 towardz<0.5 for increasing
temperatures.

To check that this high-temperature behavior indeed be-
longs to the EW universality class, we show in Fig. 17 the
time evolution of the interface width after rescaling of the
time by Lz and Lz with z=2 andz=0.5. As expected in an
EW growth model we observe a power law behavior with an
exponentb=0.25.

D. Transition from low to high temperature: Thermal
characteristic length

Let us now consider intermediate temperatures. We can
actually establish a quantitative criterion to discriminate be-
tween low and high temperature behavior.

As stated above the probability of depinning of a pinned
configuration derives from the distribution of depinning
forces along the front. These depinning forces can be ranked
from the smallest(the extremal site) to the largest one. The
extremal site is denotedi* and the associated depinning force
is Fc. The second smallest isi2 and the corresponding force
is Fi2

. The typical depinning timet* is

1

t* = o
i

1

ti
=

1

ti*
S1 + o

j=2

N
ti*

ti j

D s35d

where

FIG. 15. Dependence of the mean waiting time on the tempera-
ture after rescaling by the dominant Arrhenius factor. The straight
line indicates a power law behavior of exponent 2.3 compared with
the valuesa−1dn<2.6 obtained in Eq.(33) for the low temperature
dynamics.

FIG. 16. Mean wavelet coefficients obtained for the depinning
front driven atFext=0, sF* −Fext=0.569d for various temperature.
The straight lines indicate the two limit behaviors of roughness
exponentsz=1.25 andzT=0.5 corresponding to the critical state for
temperatures close to zero, a “SOS-like” behavior for higher forces.
System sizeN=4096, 323106 iterations.
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ti*

ti j

= expSFext− Fc

T
−

Fext− Fi j

T
D = expSFi j

− Fc

T
D .

s36d

We see here that the relative weights corresponding to the
different sites do not depend on the level of external driving
but only on the difference of force to the extremal one. It is
thus clear that as soon asFc−Fi j

@T the waiting timet* is
dominated by the extremal timeti* . The ranking allows one
to restrict to the criterion:

Fc − Fi2
@ T. s37d

The previous section gave us the knowledge on the distribu-
tion of depinning forces along the front, namely

QsF* − Fid ~
1

L
sF* − Fid−«. s38d

We may thus estimate the typical difference between the two
smallest depinning forces along the front:

E
Fc

Fi2 1

LD sF* − Fd−«dF =E
F*−Fi2

F*−Fc 1

LDx−«dx<
1

LD s39d

where 1/LD in the integral is a normalizing factor of the
subcritical force distribution andLD at the right-hand sides is
the number of subcritical sites. A Taylor expansion aroundFc
leads to

sFc − Fi2
d < sF* − Fcd«. s40d

We see in Fig. 18 that this scaling is nicely observed with
the value «=1.7 consistent with the estimation obtained
above for the distribution of subcritical depinning forces.
The extremal value of the depinning forceFc is a fluctuating

quantity during the course of the propagation. In the first part
of this paper we saw that the differenceF* −Fc can be asso-
ciated to a typical distanced between consecutive depinning
sites by the scalingd~ sF* −Fcd−n. The criterion for extremal
depinning during the propagation can thus be characterized
by a distancejT below which the activated site is the ex-
tremal one and above which the activated site is randomly
chosen along the front:

jT ~ T−n/«. s41d

Note that this estimation differs from the scaling recently
proposed by Chauveet al. [18] jT~T−n/bsF* −Fd−l.

In Fig. 16, we present the scaling of the front roughness
obtained for a constant forcing at various temperatures. As
expected, the scaling evolves from the zero temperature be-
havior z=1.25 to an annealed behaviorz=0.5: the various
curves are distributed between these two limit cases. How-
ever, rescaling the lateral length by the temperature depen-
dent characteristic lengthjT, we can collapse all results onto
a single master curve(see Fig. 19) where the small argu-
ments correspond to the critical behavior and the large argu-
ments to the annealed behavior.

IV. CONCLUSION

We studied the depinning of an elastic line in strong pin-
ning conditions. In the first part we focused on the critical
behavior at zero temperature, based on an extremal dynamics
to perform numerical simulations. Beyond the scaling prop-
erties of the front roughness and the avalanche dynamics
observed at the depinning transition our main results concern
the statistics of the depinning forces. At each conformation
of the front we can associate the minimum forceFcstd
needed to depin the front. The distribution of these depinning
forces present a singular behavior in the vicinity of its maxi-
mum value, the critical thresholdF* is PsFcd~ sF* −Fcdm

where the critical exponentm directly depends on the rough-
ness exponentz of the depinning front. Moreover, this dis-

FIG. 17. Time evolution of the interface width at high tempera-
turesT=0.1d with a low forcingF* −Fext=0.39. The time and height
coordinates are rescaled byLEW

z andLzEW, respectively. The value
zEW=2 andzEW=0.5. The evolution of the width is well described
by the power lawwstd~tbEW with bEW=0.5 (dashed lines). These
critical exponents are consistent with a growth of the Edwards-
Wilkinson type.

FIG. 18. Difference between the two smallest depinning forces
F2−Fc along the front against the differenceF* −Fc. The data are
well described by power law of exponent«=0.7.

UNIVERSAL DEPINNING FORCE FLUCTUATIONS OF… PHYSICAL REVIEW E 70, 051101(2004)

051101-11



tribution relative to large jumpsd in the activity adopts a
universal form for all values ofF.

Moreover, it appeared that the critical dynamics concen-
trates on a very tenuous set of sites(termed subcritical) along
the front, in fact a fractal structure. Beyond neighboring ef-
fects, the critical site is always chosen among this set. The
latter can thus be regarded as precursors of the future ava-
lanches. All of these sites are characterized by a subcritical
depinning force, namely the forceF needed to make them
move is below the critical thresholdF* . Again the distribu-
tion of the depinning forces associated to these precursory
sites presents a universal character:PsFd~L−1sF* −Fd−«,
again composed of a universal form when conditioned by the
distance to the active site.

In a second part we extended the study of the depinning
transition at finite temperature. The front was driven at a
constant below threshold driving force. A simple Monte
Carlo algorithm was developed to simulate the activated dy-
namics.

Two limit cases were considered. At very low temperature
or at small scale, the extremal site is by far the most probable
site to depin and all critical properties are preserved. In this
limit, the finite temperature then mimics the extremal dy-
namics. Assuming an Arrhenius behavior for the depinning
from any individual trap we are able to associate a physical
time to this quasi-extremal dynamics. The knowledge of the
depinning force distributionPsFcd~ sF* −Fcdm then allows a
quantitative estimate of the front velocity. We recover a
simple Arrhenius dependence with a temperature power law
dependence. This scaling form which is supported by nu-
merical simulations appears to be different from previous
propositions[14,15,28].

At high temperature or at large scales, all sites can equally
be activated. This annealed dynamics has been shown to be
well described by an Edwards-Wilkinson growth model. The
transition between these two regimes can be estimated using

the ratio of the temperature to the gap between the two
smaller depinning forces. We showed that this gap can be
naturally associated to a temperature dependent characteristic
length along the frontjT~T−1/«n, the exponent« is associated
with the distribution of subcritical forces along the front.
Below the characteristic lengthjT the front adopts naturally a
critical dynamics, at larger scales the annealed dynamics
dominates.

APPENDIX: A SOLVABLE MEAN FIELD
DEPINNING MODEL

We present in this Appendix a mean field variant of the
extremal depinning model studied in Sec. II. We first note
that we can set all thresholds to 0, and provided that the
moves are still random, the behavior remains similar. In this
context the extremal sitei* simply minimizes the local elastic
force:

Fc = Fi*
el = min

i
Fi

el. sA1d

Once the extremal site has been determined the front ad-
vances up to the next trap. However, we introduce here a
change in the definition of the elastic forces. In the original
Laplacian versionFi

el=−hi−1+2hi −hi+1, the extremal site is
unloaded proportionally to the local displacement just cov-
ered and conversely its two nearest neighbors are equally
loaded. In the mean field version we present here, the two
sites loaded to keep the elastic force balance are chosen ran-
domly along the front, hence the term mean field.

Let us callx the gap between the local elastic force and
the critical threshold,x=Fel− f* , psxd its probability distribu-
tion, and Psxd the cumulative probabilityPsxd=ex

` psyddy
[from which psxd=−P8sxd results].

For a system of sizeL, the smallestx has a densitypssxd
and cumulativePssxd. We have Pssxd=PsxdL, and thus
pssxd=LPsxdL−1psxd.

Ignoring spatial correlations, we can write a mean field
master equation forpsxd.

dpsxd
dt

= − pssxd − 2psxd +E
0

1

pssx − 2yddy, sA2d

2E
0

1

pssx + yddy= − Pssxd − 2psxd +
1

2
fPssx − 2d − Pssxdg

+ 2fPsxd − Psx + 1dg. sA3d

The terms of the right-hand side correspond to the prob-
ability of occurrence of the following events:(i) x is the
extremal value of the elastic force along the site;(ii ) before
the update, one of the two random sites to be loaded carried
a forcex; (iii ) after update the advancing site carries a force
x; and(iv) after update one of the two random sites carries a
force x.

In the steady state, we have

− 2P8sxd − Ps8sxd = s1/2dfPssx − 2d − Pssxdg

+ 2fsPsxd − Psx + 1dg. sA4d

FIG. 19. After rescaling the abscissa by the characteristic length
jT~T−n/« with n=1.33 ande=1.4, and the ordinate byjT

z with z
=1.25, the mean wavelet coefficients obtained for the depinning
front driven at the constant driving forceFext=0, sF* −Fext

=0.569d for different temperatures collapse onto a single master
curve.
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In order to integrate this equation, we distinguish in the
following between three different intervals. The region
1 sx,0d corresponds to the subcritical sites. The region
3 sx.1d corresponds to deeply pinned sites which have no
chance to become neither subcritical nor critical at the next
depinning event. The intermediate region 2sx.1d ex-
changes with the two other ones. Forx,0, we expectPsxd
to be equal to 1 but a small correction vanishing asL di-
verges. Psxd=1−CLsxd. We look for CLsxd=s1/LdFsxd.
Thus Pssxd=f1−s1/LdFsxdgL→expf−Fsxdg. The equations
corresponding to the three regions may be written:

Part 1:sx,0d

− Pssxd8 = s1/2df1 − Pssxdg + 2f1 − Psx + 1dg, sA5d

Part 2:s0,x,1d

− P8sxd = Psxd − Psx + 1d + s1/4d, sA6d

Part 3:sx.1d

− 2P8sxd = s1/2dPssx − 2d + 2Psxd sA7d

and the solutions are, respectively,
Part 1:sx,0d

Pssxd = − x2 − 2x, sA8d

Psxd = 1 −
1

L

2sx + 1d
xsx + 2d

, sA9d

Parts 2 and 3:sx.0d

Psxd = s1/4dsx − 2d2. sA10d

These analytical expressions are compared with numerical
results in Fig. 10. Beyond the excellent agreement between
analytics and numerics, the similarity between Figs. 9 and 10
shows that this simple mean field model allows one to re-
cover the main feature of the original model. The distribution
of local depinning forces is composed of a size independent
supercritical part and of a size dependent subcritical part
which presents in addition a singular behavior close to the
forces that approach the critical threshold.
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