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Universal depinning force fluctuations of an elastic line: Application to finite temperature
behavior
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The depinning of an elastic line in a random medium is studied via an extremal model. The latter gives
access to the instantaneous depinning force for each successive conformation of the line. Based on conditional
statistics the universal and nonuniversal parts of the depinning force distribution can be obtained. In particular
the singular behavior close to(amacroscopig critical threshold is obtained as a function of the roughness
exponent of the front. We show, moreover, that the advance of the front is controlled by a very tenuous set of
subcritical sites. Extension of the extremal model to a finite temperature is proposed, the scaling properties of
which can be discussed based on the statistics of depinning force at zero temperature. In particular a new
temperature-dependent correlation length is shown to become relevant.
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[. INTRODUCTION “subcritical” propagation. Note that this situation of thermal

The depinning of elastic interfaces allows one to describgounding[14,13 differs from the creep regime at very low
the phenomenology of a variety of physical phenomena suc reing which has been ex?e.nswely S'[.Ud'ed In recent years
as the motion of a wetting contact line on a disordered subl16—19- In the latter, the driving force is very close to zero
strate[1], the propagation of a fracture frof2] in a hetero- and thermal ac_tlvatlon may a!low back and forth motion
geneous material, or the advance of a magnetic wall in a thiglong the direction of propagation. Close to threshold, how-
layer[3]. The depinning transition can be seen as a nonequEVer, we may neglect the probability of a backward motion.
librium critical phenomenorisee Refs[4—6] for recent re- Moreover, in the context of fracture or wetting, chemical
views). The system is driven by an equivalent external forcereactions may produce an irreversible motion of the front. In
(the magnetic field for the domain wall, the stress intensitythe following we will not consider the possibility of the front
factor for the fracture front,.) which plays the role of a receding. The activated mechanism thus turns out to be rela-
control parameter. The richness of the phenomenology arisésely easy to implement as an extension of the extremal
from the competition between the disordering effect of themodel, where the latter is recovered in the limit of zero tem-
quenched pinning potential and the order{sgnoothing ef-  perature. The motion consists in a succession of fast moves
fect of the elastic forces acting on the front. The nafstert  interrupted by long trapping events which require a thermal
range/long rangeof the latter will directly affect the univer- activation step to overcome an energy barrier. If the tempera-
sality class of the depinning. Moreover, depending on thdure is very low compared to the trap depths, the first site to
strength of the disorder, the motion front will either be col- depin will be the weakest one. In this limit of a vanishing
lective (weak pinning or consist of successive avalanchestemperature the system will thus naturally followexiremal
(strong pinning. In the following we focus on the latter situ- dynamics. The degeneracy of the time metric can, however,
ation. be clarified by studying the zero temperature limit. This de-

To study the pinning/depinning transition, a specific algo-scription is valid for a subcritical forcing, close to threshold.
rithm has been introduced under the generic name of “exThis forcing introduces a finite correlation length. However,
tremal model”’[7-11. It consists of adapting the driving the thermal activation itself introduces another finite correla-
force so that only one sitéhe weakest onecan depin at a tion length. The competition between these two length scales
time. In so doing, the system is compelled to stay at the edgwill finally control the scaling property of the propagation.
of the critical state(the front is driven at an infinitely low The aim of this paper is thus a careful study of the effect
velocity). Thus the evolution consists of a series of equilib-of temperature on both the dynamics and the critical proper-
rium positions because the driving force is adjusted to meeties of the depinning fronts. A key parameter in the finite
this condition. It thus can be seen as an ideal quasistatiemperature depinning is the ratio between the thermal en-
driving [12]. However, the price to pay in such a descriptionergy and the trap depths all over the front. The latter directly
is that the dynamical aspects of the propagation are not adepend on the fluctuations of the depinning forces at zero
counted for(see Ref[13] for details on this subjektin a  temperatures. The external force needed to depin the front
more complete picture either inertia or viscosity would havefrom a blocked configuration is actually a highly fluctuating
to be introduced. As dynamics is sacrificed, time metric isquantity. The knowledge of the distribution of these depin-
not included in the “extremal model” description. What is ning forces thus appears to be an essential ingredient in the
preserved is simply the ordering of successive configurastudy of depinning at finite temperature.
tions. The first part of this paper is thus devoted to the study of

Close to but below threshold, at finite temperature, arthe depinning forces at zero temperature. In Sec. Il A we
Arrhenius activation mechanism can allow for a steadygive the definition of the model and in Sec. Il B we recall its
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scaling properties. In particular we present evidence for thelescribed, while the transition between these conformations
super-rough scaling of the interface and its consequences doecomes part of the postulated rules of the model but does
the dynamic exponent. Our main new results for e0  not stand for a real dynamic. Thus in this first parshould
depinning transition are presented in the two following secnot be misinterpreted as a real time. However, in the finite
tions. In Sec. Il C we show that in the same manner as théemperature section, we will revisit this question and see
width of the depinning interface, the instantaneous value ohow the extremal dynamics can be recovered from a more
the depinning force is a fluctuating quantity whose distribu-realistic dynamics.

tion can be described by a universal function. The scaling As introduced above, the motion of the front driven at an
properties of these fluctuations are used to propose a precisaternal force= depends only on the competition between a
determination of the critical point. In Sec. Il D we show the local trapping forcey{x,h(x)] and an elastic interaction
existence of a tenuous fraction of precursory sites along the®!(x). We now specify them in more detail.

interface. These sites are characterized by a subcritical de- The distortion of the front due to the random environment
pinning force while most of the sites of the interface need anduces elastic restoring forces. In the case of wetting the
force larger than threshold to depin. The distribution of theseatter are the capillary forces. Using a small slope approxi-
subcritical forces is singular close to threshold and characmation, the elastic force contribution is linear with respect to
terized by a universal exponent. Moreover, the location oh(x), F(x)=/G(x-x")h(x’)dx". Depending on the physical
these precursors along the front is shown to obey a fractaituation considered, these interactions can be short or long
distribution. ranged. In the case of wetting the ker@presents an alge-

In the second part we study the finite temperature roundpraic decayG(r)r=2 up to the capillary length. In a Hele-
ing of the depinning transition. In Sec. Il A we expose theshaw experiment, however, the cutoff scale of the capillary
details of the numerical simulations. In Sec. Il B we showfgrces is given by the width of the cell and the Green func-
that at low temperature the velocity follows an Arrheniustion can be approximated §= &”, the second derivative of
dependence with a temperature dependent prefactd).  the Dirac distributions. These short ranged interactions are
x T 7exp(—f/T) wheref is the distance to threshold anda  then well described by a Laplacian term. In the following we
universal exponent only dependent on the critical exponentfcus on the latter situation witFe'ec—3h/dx?, or in the
of the zero temperature transition. Note that this expressiotliscretized versiork®'=—h;_,+2h,—h,;.
which is consistent with our numerical results differs from  The randomness of the environment can be introduced in
the scaling proposed if14,18 v(T) = T#*d(f/FYr). In Sec.  two respects: first in the spatial distribution of the traps, and
1C we show that the interface obeys an Edwards-second in the distribution of the trap depths. No correlation is
Wilkinson-like scaling at high temperature. In Sec. Il D we considered here and these two quantities are entirely charac-
focus on the transition between critical and annealed reterized by their statistical distribution. Note that the same
gimes. We show that in addition to the usual correlationcritical behavior is obtained as soon as either the trap posi-
length the latter is controlled by another length scéje tions or the trap depths are random. Either one of these two
which depends only on temperature as a power law. Theuantities can be a constant without changing the universal-
exponent associated to this length scale is directly related tioy class of the model, i.e., all critical properties remain un-
the exponent which characterizes the distribution of subcritiaffected. We have performed a number of different numerical
cal forces developed in part I. This scaling slightly differentsimulations changing the shape of the two distributions, and
from the one obtained by Chauwt al. [18] is again sup- the only changes which are observed concern small scales in
ported by numerical simulations. space and time. In the following we will consider that the

trap depthy[x,h(x,t)] and the front advance at the active site
are uniformly sampled between 0 and 1.

Il. DEPINNING FORCE DISTRIBUTIONS In order to study the depinning force fluctuations, we
drive the system with an extremal dynamics. This consists of
adapting the external force so that only one site can depin at

At each time step, the front is represented as a singleach iteration step. For a given external foFgethe criterion
valued functionh(x), with the additional assumption that its for depinning at a particular positidnon the front is
slope is small. The mean orientation of the front is along the
X agis, while it propagates along a perpendicular direcgion F>Fi(t) = %(h(®) + Fim({hj(t)})- 1)

For numerical simulations, the front is discretized on a regu- One can thus naturally define the extremal siteh;)
lar grid of size L with periodic boundary conditionsh;,  g,ch thatF(t) =minF;(t) =y +F% is the minimal external

=h(x)). force to apply so that at least one site of the front can depin.

Time is also discretized and incremented by one unit afrhe depinning criterion for a particular conformation of the
each elementary move of the front. This time is thus a simplgygnt is thus

way to order the successive events, but it does not corre- ) ol

spond to a physical time. Additional information has to be F > F(t) = min[y(h(1) + F7(h (O] 2
introduced to describe the off-equilibrium motion, and thus '

decide whether viscosity or inertia, or activation processes The front depinning forcé-(t) is in our simple version
control the dynamics. The strength and weakness of the exetally controlled by the front geometry. The extremal dy-
tremal approach is that only successive static positions aneamics simply consists of tuning at each iteration dtépe

A. Description of the model
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external force at exactly the depinning force of the current -4 : |

front conformation#(t) =F.(t). From the dynamical point of o Lot o
view it corresponds to drive the front at vanishing velocity 0 [ O |
with a very stiff spring. The system thus remains constantly o 10

at the edge of the critical state. The front explores a large — | --- slope 1
number of different configurations to which correspond fluc-
tuations of the depinning force.(t). By definition the criti-

cal thresholdF" is the minimum constant force to apply so
that the front can advance indefinitely, it thus corresponds tc
the maximum of the front depinning forde, over all con-
formations:

F = mta>FC(t) = mta){miin][')’i(hi(t)) +F({hohH]. (3
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From the numerical point of view, the extremal dynamics log, (Ax/L)

finally amounts to iterate the following sequenggidentify

the extremal site ; (i) advance the front at positian by a FIG. 1. Standard deviation(Ax) of the height difference be-
random incrementjii) update the trap depth, on the site  tween points separated by a distaricefor different system sizes
i” corresponding to the new front positidiii’); and (iv)  L=28,29 210 The rescalingk—x/L, o— o/L¢t with ¢=1.25 al-
update the elastic coupling‘{' on the front to account for lows one to capture the finite size effects.

this local advance. The most time consuming step is the

identification of the extremal site. Numerically efficient jymps of sizeAx>¢ scales asP(Ax>¢)= ¢ In the

implementation can be used to reduce the computation coglamework of an extremal dynamics driving, the driving
of each iteration to loglL) operations because of the short force s not constant but is adjusted at the current depinning
range nature of the interactiomote that in case of long force F.(t). An avalanche triggered at a for€ethus corre-
range interactions, introducing an ultrametric distance alongsonds to a sequence of depinning events such that the cur-
the front[20] allows one to reach the same numerical effi-rent depinning force remains below the driving force
ciency without changing the universality class of the mpdel £ (1) <F. The distributions of avalanches can thus be di-
rectly derived from the fluctuations of this depinning force
B. Scaling properties F.(t). A directly related quantity is the probabiliff(Ax|7’)
that after a sequence af events the depinning site has

Let us summarize the expected scaling behaviors for afl oved a distancadx. We have

elastic line driven at a constant for€eclose to(but below
thresholdF". , o, AX

(1) Below thresholdF" the length of the typical advance PAX[™) = Ax?¢ £z (4)
&, scales ag | «(F'—F)™"L.

(2) The correlation length along the front scales aswhere¢(u)u® for u<1 and(u)=const foru>1. In the

& |F —F™. framework of extremal dynamicg, corresponds to a dy-
(3) The relaxation timer of a line segment of length namic exponent{see Refs[13,23 for details on the rela-
¢ scales ag« §; zis called the dynamic exponent. tions betweere’ and the genuine dynamic exponenin-

(4) At threshold, in the steady state, the front conforma-troduced abovke In the following we restrict the study to
tion is self-affine, characterized by a roughness expotient extremal dynamics and we use the notatifor the sake
This can be shown by studying the average power spectrumf simplicity.
of the front which scales ak™*~%. Similarly the wavelet Simple scaling relationships immediately derive from
transform also reveals the same expori@d}. In real space, these properties and allow one to reduce the number of in-
the typical widthw (rms heighy of the front over an interval dependent exponents.

Ax scales asv(Ax) = (Ax)¢, when( is smaller or equal to 1. (1) Below threshold the front advance is confined to a
This is observed for some long-range elastic kernels. In ouregion of lengthé;, and in the case of a roughness exponent
case, where the elastic kernel is the local curvature, we wilf>1 the mean advance over this region is of order
see below that the exponent is larger than unity. In this &, < &L e (F=F")™ILE™ This leads to

“super-roughening” case, the scaling is anomalfils22
and the previous relation has to be correctedw@x)
«L¢1Ax. In Fig. 1 we show numerical evidence for the va- with an unusual size-dependent prefactor. Note that this
lidity of this “super-rough” scaling with the valug=1.25 for ~ property is only true for a roughness exponént1, other-

the roughness exponent. wise v, =y{.

(5) Close to the critical threshold the motion consists of (2) Over a region of exteng,, the typical macroscopic
successive localized avalanches of lateral 2ixeThe size  curvature is of ordegﬁ‘z, and the latter scaling should bal-
distribution of these jumps follows a power law up to the ance the fluctuation of depinning force observed in order to
correlation lengthé. Below ¢, the probability of observing depin such a segmeanocgu'l’”. Therefore[5]

vV, =y =v
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l 5 T T T l\ T T T T T T T T T T
+ = 2. (5) i o At=1
o <« 28 4 @ O At=4 7
(3) Letus recall that time only counts individual motions, [ a\‘*@ a ﬁiiéfi
and is not physical. Therefore the dynamic exponent is an 5 '5__ 4 A=256 ]
improper denomination. Nevertheless, in this section, we ¥ . | 8. - slope-2.95 ]
. - . . . - 210 B
keep this denomination since it refers to its common usage ir & | |
statistical models. The mean advance of a segment of IengtFa_ls_ @\ _
& scales ad.¢'¢ and the size of an avalanche of lateral ot L l
extensioné may be written ag< £&L¢t which leads imme- Sl LN i
diately to - LY 1
25+ |, —
z=2 (6) L i
whenever{>1. Note, however, that even if the dynamic e -|4 ' I2 ' (I) ' é ' zlt ' é ' fls ' 1% 12
exponeniz=2 appears to be superuniversal as sooti>ag, log, Ax/At"
the relation betweemn and & becomes system size dependent.
Otherwise, for{<1, the same argument leads 1g1+{ FIG. 2. Distribution of distances between active sites corre-
[11,23. sponding to depinning events separated by a time delay between

All exponents buta which characterize the avalanche be- At=1 andAt=25. After rescaling all distributions fall on a master
havior can then be directly derived from the roughness exeurve. This rescaling has been obtained with the vaki2 for the
ponentZ. A simple scaling relationship can, however, be es-dynamic exponent. The dashed line corresponds to a power law of
tablished in the context of the avalancHed]. Let us start exponenta=-2.95.
from the probabilityP(Ax|7) that after a sequence ofvents X
the depinning site has moved along the line from a distance P(Fo) « (F = Fo*. (8)

Ax. The distance\x is nothing but the sum of all successive

jumps Ay; occurring at steps_i [1,7], the distribution of 4, depinning forcd, fluctuates and can be described by a
thgse jumps bein@(Ay) = (Ay) ..Assumlng I’.IO.tIme COITE-  statistical distribution. The maximum value of the latter
lation we can apply a generalized central limit theorem foryiyes the value of the critical threshold. In the framework of
the sum variableAx. The value of the exponerd being 3 gimulation this threshol& is obtained as the maximum
slightly below 3, the limit distribution is not Gaussian but a geninning force over the ensemble of depinning events. Re-
Lévy distribution £, that exhibits at infinity the same gyicting ourselves to a finite system of lateral extendion
power law behavior as the original power law distribution: o getermination will be biased by finite size effects. This

Let us come back now to the series of depinning events.

La-1(AX) o< (AX)™ invites us to introduce a simple prescription to get a very
1 Ax accurate determination d¥ . Conditioning the distribution
P(AX,7) = Tl/(a—l)['a—1< %,(a_l)) (7) of depinning force by the distana& between consecutive

active sites, we can build distributiof®F;d). We expect
which leads to the scaling relationshig 1 +z. In the present these distributions to converge to a Dirac distribution cen-
case of Laplacian elasticitg=2 and the predictiora=3 tered atF" as d diverges since we probe only critically
slightly overestimates the value obtained by numerical simupinned configurations. This effect is directly observed in Fig.
lations a=~2.95 (see Fig. 2 This good agreement can be 5 where we superimpose the original distribution of depin-
interpreted as the quasiabsence of temporal correlations.
Note, however, that in the case of long range elasticity where
the role of temporal correlations is expected to be higher, this r
scaling relationship becomes=2+¢{ which is far above the 0.5 -
measured values= « wherec is the exponent of the elastic
redistribution function. As developed in Ref23,24, in the
latter case, temporal correlations become more significant. y'
S0y ‘
0.5

1

C. Scaling and universality of depinning force
fluctuations

In Fig. 3 we display a sequence of depinning forEg&) I ]

observed over 1000 steps of an extremal dynamics simula
tion and the corresponding distributié¥(F;) in Fig. 4. The -1.5
upper force value of this distribution corresponds to the criti-

cal thresholdF". In the following we will argue that close to

the critical threshold the distribution of depinning forces ex-  FIG. 3. Sequence of depinning forc&s(t). The dashed line
hibits a universal behavior: corresponds to the value of the critical threshBld=max F(t).

. | . | . | . | .
0 200 400 600 800 1000
t
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FIG. 4. Distribution of depinning forceq(F,). FIG. 6. The linear relationship between the mean depinning

) L . . force and its fluctuation allows one to extrapolate the value of the
ning forcesP(F¢) and the contributions corresponding to in- gepinning force for an infinite distance between consecutive active

creasing jump sizesl. We observe that, except for small sites, i.e., the depinning threshdfd for an infinite system. A nu-
jumps the successive distributions keep a similar shape up t@erical fit givesF” =0.392+0.001.

scaling factors. In the following we check that these condi-

tional distributions can indeed be rescaled onto a uniqug,es of the jump sizé, this linear behavior is obeyed. By
master curve using the scaling: extrapolation of this linear relation to an infinite system for

which the widthaFC(d) vanishes, we obtain a precise deter-
mination of the critical thresholB”. We obtain in the present

case
As a direct consequence of such a scaling we should in

particular observe that the first and second cumulant of these
distributions, i.e., the differencE”-(F,) and the standard
deviation both scale ag™:

1 (F-F
P(F¢.d) = ﬁiﬁ(?) 9

F"=0.392+0.001. (12

Using the latter value, we plot in Fig. 7 the evolution of
OoF(d) and UFc(d) versusd in logarithmic scale. The ob-

— -b
SF(d)=F —(Fo)(d) < d™, (10 served linear behavior corresponds to power laws of expo-
= b nentb=0.75. The value of the latter exponent can be under-
or (d) = V(FO(d) = (F*(d) < d™. (11D stood since the depinning forée directly derives from the

This scaling directly leads to a linear dependence betweelrg)cal curvature. The latter can be estimated using the elastic

(F(d)) andaFc(d). In Fig. 6, we check indeed that for large

T T T T T T
10— | . : , . I — L o . |
: 3 . “o. O F-<F>(d)
oL d=2 ] ) 0. 5 o)
10 g 4= E " e slope -0.77
£ - d=8 o -- slope -0.76
L -~ d=16 ~ -4 g, O -
_10'F < < ", ..
I o' g O
= [ L 6 B _
3 =
107F E Kol
E -8 g -
10°F 3
F | | 1
i 10 4 6 10 12
10 5 15 1 05 0,5 log, d
F

FIG. 7. The mean distance from the depinning force to the de-
FIG. 5. Distribution of depinning forces conditioned by their pinning threshold and the depinning force fluctuations calculated

distance to thresholgy(F.,d), and the resulting global distribution for given distances between consecutive active sites obey a scaling
P(F.) (bold). The larger the distano# between consecutive active law with the latter distance. The straight lines plotted as a guide to

sites, the narrower the distributions and the closer to the criticathe eye correspond to power laws of exponent 0.76 and 0.77 con-
force. sistent with the expected value Z=0.75.
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FIG. 8. After rescaling the distributions of depinning forces cor-

responding to distance$=4,8,16, and 3Zollapse onto a unique FIG. 9. Distribution of individual depinning force'gi:%:':iel
universal master curve. along the front. The subcritical part of the distributidh<<F’") is

size dependent. In the inset we see that the relative weight of this
subcritical part follows a power law of exponent 0.65 with the size
kernel 6(19f|1d the{rgughness of the_front. In the present case W€ This suggests that the set of subcritical site is fractal with a
have 6F (Q) 0<.d Whereg'z1.2.5 is 'the roughness exponent yimensiond=1-0.65=0.35.
of the depinning front. This estimatidn=2-7~=0.75 is con-
sistent with our numerical data. Moreover we can identify : L . e
1/b as the exponent characterizing the divergence of the At this point it is important to clarify that the distribution

. P by itself is not universal and depends on the local defini-
icnogrg\?vtlgp ézn(gSt)h close to threshold and we recover the sca ion of the front advance and the trap depth. The details of

the random distributions are absorbed in the small time and
scale behavior. In contrast collective effects contribute to
L+ 1 =2. (13) large jumps in the active sites afld is universal as well as
v the singular behavior dP close to threshold.

Using this scaling we check in Fig. 8 that the successive
conditional distributions collapse onto a single universal D. Subcritical sites along the depinning front
master curve. The knowledge of the distribution of distances |, Fig. 9 we show the distribution of all individual depin-
between successive depinning sites allows us now to deriv,er~Ing forcesFi:yi—Fie' along the front obtained from ex-

the behavior of the force distribution close to threshold.  {1emal dynamics. We see clearly that two different popula-

tions of sites can be distinguished. Above threshbld

Q(F>F") follows some kind of truncated Gaussian distribu-

tion. We also note that there is a small but significant number

of sites which carry a force smaller than threshdids F".

:f I y(F" = Fo) ety e-ade Moreover, the decay of frequency is very abrupt right below
F. We will argue that this decay can be rationalized as a

P(F*_Fc):f P(Fe: €)p(£)de

power law of the differencéF -F.), Q(F <F")xA(L)(F"

=(F - FC)‘l"a’”Vf ut@ Ly (u)du -F)t. In the inset of Fig. 9 we plotted the proportion of
subcritical sitesQ(F <F") against the system size. This evo-
o (F" = Fp)@ b1, (14)  lution appears to follow a power la@(F <F")«LP™* with

D=0.35. We show below thd can be regarded as a fractal
We thus obtain a universal behavior of the distribution ofdimension of the set of subcritical sites along the front.
depinning forcesF, close to threshold as presented in Eq. In the Appendix, we will introduce a mean-field version
(8), with of the model where such a distribution can be computed
analytically. In this simple variant of the depinning model,
u=(a-v-1~1.6. (15) the elastic _force is not transferred from the active site to its
nearest neighbors but to two sites chosen randomly along the
Note in addition that when the distandeis small com-  front. Although a quantitative comparison cannot be estab-
pared to the correlation lengthx=d/{<1, the dependence |ished because of the mean-field nature of the solvable
of the P distribution with respect tdF -F¢) should be in-  model, on a qualitative ground, the main features of the force
dependent ofl, so thatP(F;;d) and P(F.) share the same distribution are recovered. In Fig. 10, one can distinguish
behavior(see Fig. 3 Hence we expeaf(x) ~x* for x<1,in  again between a Gaussian-like distribution for depinning
good agreement with the behavior shown in Fig. 8. forces above the critical threshold and a singular part below
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FIG. 10. Comparison between the result of a direct numerical log,(d)

simulation (symbolg and the previous analytic expressioft®n-
tinuous curvep The system size was set te=28,219 and 22 As
above we see that only the subcritical part is size dependent.

FIG. 11. The differenceSF (current force to threshojdf pre-
cursory sites located at a distartérom the extremal site scales as
a power law ofd. The straight line corresponds to a power law of

exponent 0.752-¢.
the threshold. Moreover, it can be shown that the amplitude

of this singular part is system size dependent. In Fig. 13 we show that the subcritical sites are not ho-

h Thﬁ ;‘gutl)cntmal” s!tes which clarry a force smallerlthgn mogeneously distributed along the front. We plot in logarith-
threshold play a very important role, as we now try to ¢ ar'f.y'mic scale the distribution of distancesalong the front be-

At each time step, the extremal site corresponds to the minkeen the extremal site and any other subcritical site. The

mum fo_rce_ and always remains sm_a_ller t_Han Thus the . straight line obtained in logarithmic scale indicates that the
active site is always part of the subcritical sites. Its depmnlnqa,[ter obeys a power law:

induces a local unloading and an additional reloading on its
neighbors. We note that a subcritical site has a chance of
being activated wherever it is located, while a site carrying a
force larger than threshold can only become active if one ofii, ¢~ .68, which indicates that the subcritical sites form a
its neighbors becomes active itself. These sites can thus Be a1 set of dimensiol =1-c~0.32. which is consistent
regarded as a population of “precursors” of depinning.  ith the valueD ~0.35 obtained above for the evolution of

_Inorder to determine the distribution of the “local” depin- e population of subcritical sites against the system size.
ning forces along the front we use the same tools as above.

We first show that the distribution d¥; along these sites
depends on their distance to the extremal one as a power law
Q(F<F") o |x;—x- @' We observe then that the conditional — d=4
distribution Q(F; <F";|x —x;*|]=d) obeys the same scaling as \ . 4=8
the one studied above for the distribution of depinning 3 \1 d=16
forces. This allows finally to estimate the power law behav- 1\ -
ior of the distribution of the depinning forces of this popula- ‘ o d=32
tion of subcritical sites close to threshold.

In Fig. 11 we plot in logarithmic scale the mean differ-
ence to thresholdF" —F;; |x;—x;<|=d) for sites at a distance
from the extremal on€. We obtain the same scaling as for
the distribution of the depinning forde, conditioned by the
distance between successive depinning sites:

n(|x+ = x| =d;F <F") = d, (19

P(F -F,d)/d"

(F =Filx—x

1
=dyed™, ==2-¢ (16) >
v 0

L i SV S

0.0 0.5 1.0 1.5 2.0
(F-RFd™®

and again we see in Fig. 12 that we can rescale all condi-
tioned distributions onto a single master curve provided the

distanced is large enough. FIG. 12. After rescaling the distributions of subcritical depin-

ning forcesF; conditioned by the distanadto the extremal sité",

P(F" - F=f>0;lx - x| =d) =d"e(fd").  (17)  collapse onto a single master curve.
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FIG. 13. Distributionn(d) of distanced of subcritical sites to FIG. 14. Distribution of subscritical depinning forc€s<F"

the extremal site. The straight line indicates a power law of expoalong the front. Close to threshold the distribution of subcritical
nent 0.32. The data being obtained with a logarithmic sampling osites follows a power law of exponent ~1.75.
d, this corresponds to a power lavid)«cd™°, c~1-0.32~0.68.
as precursors of the avalanches to come. Close to threshold

The above scaling relationships can now be used to estthe depinning force associated to these sites is power law
mate the distribution of depinning forces along the frontdistributed with an exponent depending both on the rough-
close to threshold: ness exponent of the front and the fractal dimensio®

. characterizing the population of subcritical sites.
QF -F=f>0)

=AL) f Q(F* —F;;0)n(6)de Ill. FINITE TEMPERATURE DYNAMICS
1

We now consider the case of depinning at finite tempera-
ture. The transition loses its critical charactsee also Refs.
[25—-27 for the effect of temperature on various self-
organized critical modeJsAs a matter of fact, even at arbi-
=AL)(F - Fi)—lmv—vf ULy (u)du trary Ic_JW external driving, the front keeps moving. The ve-

locity is, however, extremely low, most of the time being
x e spent to thermally depin from blocked conformations. This
= ALF -F) (19 creep motion has been intensively studied in recent years
with e=1+vD~1.45. The size dependent prefactor can befrom the experimenta[3] and theoretical points of view
estimated using the fact that for a front of sizeéhe typical [16—-19. It has been argued that at very low forcing, the
cutoff of the elastic force i&1/. Rewriting the total number Vvelocity follows a stretched exponential behavior against the

=A(L) f P H((F = F)erecde

of subcritical sites along the front then gives: driving force:
L1 F\mT
ML) = LA(L)J (F"-F)® (20) v(F,T) exp{— (F) T—J , (29
wherem=(2{-1)/(2-2).
=LA(L)L" Y1) (21) Note again that such a behavior is only expected to hap-
pen at very low forcing. This means in particular that the
=A(L)LMP. (22) macroscopic motion of the front results from a balance be-

tween microscopic backward and forward motions.

In this section we focus our study on a slightly different
situation, namely, the thermal rounding of the transition ob-
tained at finite temperature for a driving force in the vicinity
of the critical threshold. Under these conditions the follow-

The fractal dimension of this population of subcritical sites
being D, we have in addition\V(L)>LP which imposes
A(L)=L™t and we have finallfsee Fig. 1%

. 1 . D ) : .
QF -Fi=f>0) « [(F -F)™® e=1+ 2—_§ ing behavior[14,28 has been proposed for the velocity:
F-F
(23) u(F,T) o TB/Pq)( T ) (25)

We see thus that the depinning is controlled by the evo-
lution of a very tiny fraction of subcritical sites. These sites Close to threshold the probability of a backward motion
are distributed fractally along the front and can be regardedan be neglected. At finite temperature the motion thus con-
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sists of a series of rapid finite moves interrupted by longdo not satisfy the criterion are computed from their respec-
pinned stages from which the front can only escape by thertive distributions. Points such that the waiting time is below
mal activation. Two limit cases can actually be distinguishedhe time unit are also advanced. The elastic forces are then
regarding the thermal depinning of a blocked conformatiorupdated and time is incremented. If no point along the front
of the front. At very low temperature, the front most likely has been advanced, the location of the first site to thermally
depins at the extremal site. Thus the sequence of depinnindepin and the associated waiting time are drawn from the
events is not affected by the introduction of a temperatureArrhenius distributions. Again the selected point moves for-
The computation of the time spent by the front to escape anward, the elastic forces are updated along the front but the
blocked conformation allows one, however, to reintroduce dime is incremented by the waiting time spent in this blocked
physical time in this quasi-extremal dynamics. The knowl-conformation. Let us now be more explicit about the deter-
edge of the depinning force distributioR¢F.) thus serves to mination of the waiting time and the location of the depin-
guantify the velocity of the front. We find in this limit a ning site in the case of a blocked conformation.
slightly different scaling from Eq(25) . The second limit The probability P;(t)dt that the sitei is the first to ther-
case corresponds to high temperatures. During a transient, aflally depin in the time intervdlt,t+dt] can be written
sites are free to advance; then the roughening of the front can L
be well described by an annealed dynamics. This induces a 21 _t 71 _u
scaling of the front roughness different from the one ob- Pit) = Tiex;{ TI>H Tjexp( Tj)du (28)
tained at zero temperature: we observe a roughness exponent
{7=0.5 instead of the zero temperature valize1.25.

In the following we first present the simple Monte Carlo :lexp<— l) i - E 1 (29)
algorithm used to run the dynamics of the front at finite T T T
temperature. The latter is obtained by allowing activated de- - , o
pinning along the front. We then give results obtained in the 1€ Probabilityr; that the activated depinning event takes
low and high temperature limits. We finally present a crite-Place at this particular siteis thus independent of time
rion allowing one to discriminate between these two regimes. o x

j#iJt

It appears actually that besides the “static” correlation length P,(t)dt= 1, (30)

¢ of the critical transition another characteristic length of 0 Ti

thermal originé; plays a key role in the problem: belogy . . ) ,

the front follows aT=0 dynamics but abové; the activated N @ similar manner, the probabilify,c(t) that the first acti-
depinning becomes dominant and the front follows an an¥ated depinning event takes place at tifrie

nealed Edwards-Wilkinson-like dynami¢29]. t

Pacdt) = %exi_ T) . (31

K
A. A simple Monte Carlo algorithm for depinning at finite T ] o )
Note that the time and locationi appear as independent

) Let us come back to the definition of the dynamics. c?On'variables. When the front is pinned, the algorithm thus con-
slder a point a]ong the.front. At zero temperature the crite- gisis of drawing a waiting time from the distributiot(t)
rion for depinning at this particular site is and to choose the site of depinning according to the weights
D= F4+ FS'~ 5, > 0. (26)  Ti- The characteristic times involved mdepend on the dis-
S ~ tribution P(Fj) of individual depinning forces along the
Note here that for the sake of simplicity we only considerfront. In the following we focus on the two limiting cases of
the fluctuating part of the random traps, the constant pariow and high temperature.
call it I tbe“;gt implicitly absorbed in the external driving At low temperature, when the front is pinned the waiting
force: F*'=F )~ I". The values of this effective driving force time is dominated by the characteristic time of the extremal
may thus be arbitrarily low and even negative without viola-site. The sequence of depinning events is identical to the one
tion of the hypothesis of microscopic forward motion men-of the extremal dynamics. The time evolution directly results

tioned above. from the knowledge of the distribution of depinning forces
At finite temperature we can estimate the local depinning?(F.) of the extremal. At high temperature, the probability of
time t; via an Arrhenius term: depinning becomes comparable for all sites along the front.
1 t; 1 - D;
p(t)=—exp—-— /|, 7=—max l;exq — B. Low temperature behavior: Activated extremal
T T 123 T d .
ynamics
(27)

We consider here the case of very low temperature. The
wherev, corresponds to a natural frequency of vibration at-loading external forcé-.,; is constant below the threshold
the microscopic scale. F*. At a given conformation of the front, all sites satisfying

From the numerical point of view we can use the follow- the criterion of propagation are advanced, the elastic forces
ing algorithm. At timet, all points satisfying the criterion of are then updated. If the front is blocked the only site to depin
propagation(26) are advanced simultaneously up to the nextis the extremal one. The timeassociated to an iteration is
traps. The waiting times; corresponding to the poinfsthat  drawn from an Arrhenius distribution
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FIG. 15. Dependence of the mean waiting time on the tempera- FIG. 16. Mean wavelet coefficients obtained for the depinning
ture after rescaling by the dominant Arrhenius factor. The straighfront driven atF.,=0, (F" —Fe,=0.569 for various temperature.
line indicates a power law behavior of exponent 2.3 compared withThe straight lines indicate the two limit behaviors of roughness
the value(a—1)v= 2.6 obtained in Eq(33) for the low temperature exponents’=1.25 and;=0.5 corresponding to the critical state for

dynamics. temperatures close to zero, a “SOS-like” behavior for higher forces.
System sizeN=4096, 32< 10° iterations.
p(7) = 1exp<— 1) 7= lma 1.EXF<F6L'FC> _ which indeed gives rise to self-affine fronts with a roughness
T ) ¢ v ' T exponent{=0.5. We thus expect to see a crossover from

(32) =1.25 at low temperature, t§=0.5 at higher temperature.
This is precisely what is observed in the numerical simula-
The knowledge of the distribution of depinning forces tions as shown in Fig. 16 which represent the scaling behav-
P(F"-F.) gives us directly the distribution of waiting times ior of the front roughness for the same driving force but
in blocked configurationf30]. The mean waiting tim¢r) to  different temperatures. Here we measured along the front the
depin from a blocked conformation for an external constanfveraged wavelet coefficieniga). For a self-affine front of
loading Fey; is roughness exponent, these coefficients are expected to
scale asw(a) «a'*% with the length scala [21]. In log-log
¢~ Fext P scale we observe a scaling behavior with an apparent expo-
(= fextdF exp( )A(F Fe (33 nent decreasing fronj= 1.25 toward{=~0.5 for increasing

temperatures.
= To check that this high-temperature behavior indeed be-
V@ p(Text) (34)  longs to the EW universality class, we show in Fig. 17 the

time evolution of the interface width after rescaling of the
where we used the conditish<F’—F,, In this regime we time by L? and L¢ with z=2 and{=0.5. As expected in an
observe a simple Arrhenius behavior for the mean depinningW growth model we observe a power law behavior with an
time with a power law correction in the ratio temperature/€xponent3=0.25.
distance to threshold. In Fig. 15 we show the scaling of this
waiting time. After rescaling by the Arrhenius factor we ob-
serve indeed a power law dependence on the temperature.

D. Transition from low to high temperature: Thermal
characteristic length

Numerically we find for the exponem{a—-1)=2.3 compared Let us now consider intermediate temperatures. We can
with the expected value(a-1)=2.6 with {=1.25 anda actually establlsh a quantitative criterion to discriminate be-
=295 tween low and high temperature behavior.
As stated above the probability of depinning of a pinned
C. High temperature behavior: Edwards-Wilkinson-like configuration derives from the 'dis.tribution of depinning
dynamics forces along the front. These depinning forces can be ranked

from the smallestthe extremal siteto the largest one. The
At high temperature, all growth probabilities tend to be extremal site is denoteid and the associated depinning force
equal, which generates an independent evolution at each sitg. F.. The second smallest is and the corresponding force
The result is simply a white noise morphology, with everig Fi,: The typical depinning time” is
increasing slopes and curvatures. This regime can only be a

transient one. At long timegand at lower temperaturgsa 1 $1_1 % 7
bias between the growth probability and the curvature will be - < 7 - T 1+ g (35)
=2

felt and hence this limit will correspond to an annealed
model known as the Edwards-WilkinsggW) model [29],  where
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FIG. 17. Time evolution of the interface width at high tempera-  FIG. 18. Difference between the two smallest depinning forces
ture (T=0.1) with a low forcingF" —F,=0.39. The time and height F,-F. along the front against the differenéé -F. The data are
coordinates are rescaled bg,, and L‘ew, respectively. The value well described by power law of exponest0.7.

Zew=2 andgy=0.5. The evolution of the width is well described
by the power laww(t)t’ew with Bew=0.5 (dashed lines These . anity during the course of the propagation. In the first part
\(;\r/'itl'lfizlsg:rt)onsnts are consistent with a growth of the Edwards ¢ g paper we saw that the differenEe-F. can be asso-
ype. ciated to a typical distana# between consecutive depinning
sites by the scalingx (F"—F.)~". The criterion for extremal
T Fexi—Fc  Fex™Fi Fi —Fe¢ depinning during the propagation can thus be characterized
=&X T T =e&X T /) by a distancet; below which the activated site is the ex-
tremal one and above which the activated site is randomly
(36)  chosen along the front:

T
'j

We see here that the relative weights corresponding to the Eroc T Ve, (42)
different sites do not depend on the level of external driving

but only on the difference of force to the extremal one. It isNote that this estimation differs from the scaling recently
thus clear that as soon &-F, >T the waiting time7 is  Proposed by Chauvet al. [18] &= T A(F" -F)™.

dominated by the extremal timg:. The ranking allows one I Fig. 16, we present the scaling of the front roughness
to restrict to the criterion: obtained for a constant forcing at various temperatures. As
expected, the scaling evolves from the zero temperature be-
Fc-F,>T. (37)  havior {=1.25 to an annealed behavigr0.5: the various

. . ... curves are distributed between these two limit cases. How-
The previous section gave us the knowledge on the dlStI’Ibvaer, rescaling the lateral length by the temperature depen-

tion of depinning forces along the front, namely dent characteristic lengtfy, we can collapse all results onto
X 1 . a single master curvésee Fig. 19 where the small argu-
QF -Fj) E(F -F)™. (38)  ments correspond to the critical behavior and the large argu-

ments to the annealed behavior.

We may thus estimate the typical difference between the two

smallest depinning forces along the front:
IV. CONCLUSION

Fi F'-F
J ’ iD(F* - F)-de:J C%x-sdxz L (39) We studied the depinning of an elastic line in strong pin-
F L F-F, L L ning conditions. In the first part we focused on the critical
b . ) . behavior at zero temperature, based on an extremal dynamics
where 1L in the integral is aDnormall_zmg factor of the 4 perform numerical simulations. Beyond the scaling prop-
subcritical force dlstrlbutlon and® at the rlght-hqnd sides is grties of the front roughness and the avalanche dynamics
the number of subcritical sites. A Taylor expansion aroBpd  pserved at the depinning transition our main results concern
leads to the statistics of the depinning forces. At each conformation
(Fc_Fiz) ~(F —F,)°. (40) of the front we can associatg the minimum forE@(t.) .
needed to depin the front. The distribution of these depinning
We see in Fig. 18 that this scaling is nicely observed withforces present a singular behavior in the vicinity of its maxi-
the valuee=1.7 consistent with the estimation obtained mum value, the critical threshol&" is P(F) « (F —Fy)*
above for the distribution of subcritical depinning forces.where the critical exponent directly depends on the rough-
The extremal value of the depinning forEgis a fluctuating ness exponent of the depinning front. Moreover, this dis-
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30 - | - - : the ratio of the temperature to the gap between the two
[ — slope 3.5 ((=125) ] smaller depinning forces. We showed that this gap can be
— slope 2.0 ({,=0.5) o | naturally associated to a temperature dependent characteristic

length along the fronér T-2, the exponent is associated

[N
[=}
T

LFIO_ ] with the distribution of subcritical forces along the front.
W 0 i Below the characteristic lengt the front adopts naturally a
=7 | critical dynamics, at larger scales the annealed dynamics
E&lo i dominates.

on

& |

-20 N APPENDIX: A SOLVABLE MEAN FIELD

DEPINNING MODEL

230 =]
L We present in this Appendix a mean field variant of the
405 : : : ' : ' : extremal depinning model studied in Sec. Il. We first note
- -5 0 5 10 .
log, (/&) that we can set all thresholds to 0, and provided that the

moves are still random, the behavior remains similar. In this

FIG. 19. After rescaling the abscissa by the characteristic Iengtﬁ:ome_xt the extremal sitie simply minimizes the local elastic
& T2 with »=1.33 ande=1.4, and the ordinate b with ¢ force:
=1.25, the mean wavelet coefficients obtained for the depinning
front driven at the constant driving forc&e,=0, (F'—Fey
=0.569 for different temperatures collapse onto a single master ) )
curve. Once the extremal site has been determined the front ad-

vances up to the next trap. However, we introduce here a

tribution relative to large jumpsl in the activity adopts a change in the definition of the elastic forces. In the original
universal form for all values oF. Laplacian versiorFie':—hi_1+2hi—hi+1, the extremal site is

Moreover, it appeared that the critical dynamics Concen-l“'nloaoIed proportlonall_y to the local dlspl_acement Just cov-
trates on a very tenuous set of sifesmed subcriticalalong ~ €red and conversely its two nearest neighbors are equally
the front, in fact a fractal structure. Beyond neighboring ef_lo_aded. In the mean field version we present here, the two
fects, the critical site is always chosen among this set. Thaites loaded to keep the elastic force balance are chosen ran-
latter can thus be regarded as precursors of the future av4oMY along"thehfront, hgnce the tﬁml] melar: field. . g
lanches. All of these sites are characterized by a subcritica\l1 Let_ us calix the gap eletV\!een t_e ocal e _a_St'C force an
depinning force, namely the forde needed to make them € critical thresholdx=F*-f", p(x) its probability distribu-
move is below the critical threshol". Again the distribu-  tion, and P(x) the cumulative probability>(x)=J, p(y)dy
. . . . 1 —_— ’
tion of the depinning forces associated to these precursoffom which p(x)=—-P’(x) results.

F.=F2 =minF?. (A1)
I

sites presents a universal charact®(F)«L(F -F)7, For a system of size, the smallesk has aLdensit)ps(x)
again composed of a universal form when conditioned by thénd cumulative P(x). We have P{(x)=P(x)-, and thus
distance to the active site. ps(X) =LP(X)-"*p(x).

In a second part we extended the study of the depinning Ignoring spatial correlations, we can write a mean field
transition at finite temperature. The front was driven at amaster equation fop(x).
constant below threshold driving force. A simple Monte 1
Carlo algorithm was developed to simulate the activated dy- dp(x) _ _ py(X) — 2p(x) + f p(x-2y)dy, (A2
namics. dt

Two limit cases were considered. At very low temperature
or at small scale, the extremal site is by far the most probable (1
site to depin and all critical properties are preserved. In this ZJ
limit, the finite temperature then mimics the extremal dy- 0
namics. Assyming an Arrhenius behavior for .the depinnjng +2[P(x) - P(x+ 1)]. (A3)
from any individual trap we are able to associate a physical
time to this quasi-extremal dynamics. The knowledge of the The terms of the right-hand side correspond to the prob-
depinning force distributiofP(F.) = (F"—F/)* then allows a  ability of occurrence of the following eventsi) x is the
quantitative estimate of the front velocity. We recover a€xtremal value of the elastic force along the sitg); before
simple Arrhenius dependence with a temperature power la¥he update, one of the two random sites to be loaded carried
dependence. This scaling form which is supported by nua forcex; (iii) after update the advancing site carries a force
merical simulations appears to be different from previouss and(iv) after update one of the two random sites carries a
propositions[14,15,28. forcex.

At high temperature or at large scales, all sites can equally In the steady state, we have
be activated. This annealed dynamics has been shown to be , Voos
well described by an Edwards-Wilkinson growth model. The = 2P'(0) = Ps() = (1/2)[P(x = 2) = Py(X)]
transition between these two regimes can be estimated using + 2[(P(x) = P(x+ 1)]. (A4)

0

1
ps(x + Y)dy= - Ps(x) - 2p(x) + é[Ps(X - 2) - Ps(x)]
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In order to integrate this equation, we distinguish in theand the solutions are, respectively,
following between three different intervals. The region Part 1:(x<<0)
1 (x<0) corresponds to the subcritical sites. The region

3 (x>1) corresponds to deeply pinned sites which have no Py(x) = =x° - 2X, (A8)
chance to become neither subcritical nor critical at the next
depinning event. The intermediate region(x2>1) ex- 12(x+1)
changes with the two other ones. Fox 0, we expect(x) P(x) = TLxx+2)’ (A9)
to be equal to 1 but a small correction vanishingLadi-
verges. P(x)=1-V(x). We look for ¥ (x)=(1/L)d(x). Parts 2 and 3(x>0)
Thus Py(x)=[1-(1/L)®(x)]-—exd-®(x)]. The equations
corresponding to the three regions may be written: P(x) = (1/4)(x - 2)>. (A10)
Part 1:(x<0) These analytical expressions are compared with numerical

—P = (1/2)[1-P(x)]+ 21 -P(x+ 1], A5 results in Fig. 10. Beyond the excellent agreement between
w = (1121 1+2 ( )] (AS) analytics and numerics, the similarity between Figs. 9 and 10

Part 2:(0<x<1) shows that this simple mean field model allows one to re-
cover the main feature of the original model. The distribution
—P'(x)=P(X - P(x+1)+(1/4), (A6)  of local depinning forces is composed of a size independent
Part 3:(x>1) supercritical part and of a size dependent subcritical part
which presents in addition a singular behavior close to the
= 2P'(x) = (1/2)P4(x — 2) + 2P(x) (A7) forces that approach the critical threshold.
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